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ABSTRACT 

The construction industry has been a major source of work related injuries.  According to the U.S. Bureau 

of Labor Statics, Musculoskeletal Disorders (MSDs) are the single largest category of workplace injuries and 

are responsible for almost 30% of all workers’ compensation costs. MSDs are injuries and disorders that affect 

the human body’s movement or musculoskeletal system such as muscles, tendons, nerves, and discs. Risk 

factors that lead to MSDs can be broken into two categories: work-related (or ergonomic) risk factors (e.g., 

force, repetition, posture) and individual-related risk factors (e.g., poor fitness). Awkward postures place 

excessive force on joints and overload the muscles and tendons around the effected joint, and thus increase 

the risk of MSDs. 

This research develops a marker-less tracking system for assessing construction worker’s postures for the 

risk exposed to MSDs. The Posture Assessment System (PAS) uses Microsoft Kinet for capturing and 

tracking human skeleton, and then analyzes the MSDs risk exposure based on the categorization of Ovako 

Working posture Assessment System. An experiment involving fifteen graduate students performing four 

typical construction activities (e.g., materials handling, moving, hammering, and tiling) in simulated indoor 

environment were conducted to evaluate the accuracy of the system in terms of posture identification and 

OWAS categorization. The results are satisfactory and it appears promising to use the system to help 

professionals diagnose awkward work postures of construction workers. The posture identification accuracies 

were above 91.6% for all tasks except for hammering where accuracy dropped to 69.4%. The categorization 

accuracies were also above 85.4% for all tasks except for hammering where accuracy dropped to 48.4%. 
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I. INTRODUCTION 

The construction industry has been a major source of work related injuries. Most research and workplace 

guidelines have been focusing on mitigation of specific event-based or accidental injuries. Cumulative 

injuries caused due to prolonged adoption of stressful positions, occur in considerable measure and warrant 

an equal attention on development of solutions for helping in reduction of their occurrences . Based on the 

U.S. Bureau of Labor Statics [21], Musculoskeletal Disorders (MSDs) are the single largest category of 
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workplace injuries and are responsible for almost 30% of all workers’ compensation costs. The average MSD 

requires a direct cost of almost $15,000. In the Web-based program provided by OSHA [25] to project the 

total cost of company’s occupational injury and illness, the associated indirect costs can be up to five times 

the direct costs of MSDs. Statistics also indicate that MSDs accounted for 24% of nonfatal occupational 

injuries and illnesses in U.S. construction workers in 2011 [21]. Schneider [13] also reported that construction 

workers are at about a 50% higher risk of work-related MSDs than those in other industries.  

Injury prevention professional, government agencies and researchers may use different terms for MSDs 

such as repetitive motion injury, repetitive stress injury, ergonomic injury, cumulative trauma disorder, and 

overuse syndrome. Middlesworth [24] defined MSDs as injuries and disorders that affect the human body’s 

movement or musculoskeletal system such as muscles, tendons, nerves, and discs. He also argues that, unlike 

other terms that implicate only a singular cause for damage to the musculoskeletal system, i.e., repetition and 

stress, the term “MSDs” more accurately describes the problem. Repetitive motion and stress is certainly a 

major risk factor to MSDs. However, in reality, there are many causative risk factors leading to MSDs. Risk 

factors that lead to MSDs can be broken into two categories: work-related (or ergonomic) risk factors (e.g., 

repetitive or sustained awkward postures, high task repetition, and forceful exertions) and individual-related 

risk factors (e.g., poor work practices, overall health habits, rest and recovery, nutrition, fitness and 

hydration).  

This research focuses only on the risk factor of repetitive awkward postures, and aims to develop a 

computer system that can automatically track and detect postures of a construction worker, and objectively 

assess their risk of MSDs. In general, such a system requires a tracking mechanism that captures human body 

movements, transform the captured data into skeletal structure or a hierarchy of joints with information about 

its three dimensional coordinates of joints, and assess the corresponding risk levels for each of associated 

postures worthy of attention.  

II. RELATED WORKS 

2.1 Observation Methods for Assessing Postural Stress 

Kee and Karwowski [12] divided the research methods that quantify postural stress into two categories: 

observational and instrument-based methods. The observational methods visually inspect the angular 

deviation of a body segment from its neutral position while the instrument-based method continuously 

records a body posture by attaching sensors to target subject. The observational methods are more widely 

used in industry because of its nature of noninterference with job processes, low cost, and use ease [6]. There 

are several observational models available in industry that aim to objectively analyze a subject’s posture by 

quantifying award postures that may easily lead to the development of MSDs. These models include OWAS 

(Ovako working posture analysis system) [1], RULA [4], REBA [11], LUBA (Loading on the Upper Body 

Assessment) [12], TRAC [3], PATH [8], and PLAS [14], as well as the subjective Nordic Musculoskeletal 

Questionnaire developed by Nordic Council of Ministries [2]. Among these methods, OWAS, RULA, and 

REBA have been widely used and been developed for different purposes under a variety of workplace 

conditions [7]. Each of the three methods has its own posture classification scheme, and produces different 

recommended levels of required actions. Note that different methods may result in assignment of different 

recommended actions or postural stress scores for a given posture. Kee and Karwowski [12] compared these 

three methods based on 301 different postures sampled from the steel, electronics, automotive, and chemical 

industries, and a general hospital. The result shows the correlations among the three methods even though 

OWAS and REBA generally suggest lower level of stress scores compared to RULA. This research adopts 

OWAS’s classification scheme to evaluate awkward postures that contribute to MSDs.    
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2.2 OWAS (Ovako Working Posture Analysis System) 

The OWAS is a postural observational method commonly used to identify poor postures that cause 

discomfort and are detrimental to workers’ health at a worksite. The OWAS evaluation is based on sampling 

from typical working postures of major body parts including back, forearms, and legs, and the information 

about the force exerted or load carried during work upon the observed subject. 

OWAS uses a four-digit code to describe various postures and weight combinations. Except for the five 

neck postures that are considered only for reference and not actually used during the postural assessment of 
OWAS, the rest of the codes were used in this study. The codes include four back postures (i.e., “straight”, 

“straight and bent”, “straight and twisted”, and “bent and twisted”), three upper limbs postures (i.e., “both limbs 

on or below shoulder level”, “one limb on or above shoulder level”, and “both limbs above shoulder levels”), 

seven lower limbs postures (i.e., “loading on both limbs, straight”, “loading on one limb, straight”, “loading on 

both limbs, bent”, “loading on one limb, bent”, “loading on one limb, kneeling”, “body is moved by the limbs”, 

and “both limbs hanging free”), and three levels of exerted force (i.e., “< 5 Kg”, “5~10 Kg”, and “> 10 Kg”. The 

OWAS then categorizes the total number of 252 (i.e., 4x3x7x3) possible combinations of the four digits into 

four levels of action categories (AC) according to their risk of injuries as follows. 

AC1:  postures are normal and natural with no particular harmful effect on the musculoskeletal system, 

no action is required; 

AC 2: postures have some harmful effect on the musculoskeletal system, corrective actions are required 

in the near future; 

AC3:  postures have a distinctly harmful effect on the musculoskeletal system, corrective actions should 

be done as soon as possible; 

AC4:  postures have an extremely harmful effect on the musculoskeletal system, immediate corrective 

actions  for improvement are required. 

 

OWAS has been widely used in several industries for postural analysis, e.g., the works done by Engels et 

al. [5], Wright and Haslam [10], Scott and Lambe [9], and Gilkey et al. [15], and also in the construction 

industry. The OWAS evaluation is based on sampling from typical working postures of major body parts 

including back, forearms, and legs, and the information about the force exerted or load carried during work 

upon the observed subject.  

Despite the advantages of being inexpensive and practical, OWAS still faces the problem of lacking 

precision and being time-consuming because it relies solely on human observations. To overcome the 

limitation of observational approaches, recent computer vision techniques have shown great potential for 

automated and real-time ergonomic analysis in construction (e.g., [16][17]). For example, Seo etc. [19] 

developed a computer vision-based posture classification that can automate existing observation-based 

postural evaluation methods according to predefined ergonomic checklists using shape- and radial 

histogram-based features from video sequences. 

2.3 Motion Capture of Human Skeletal Structure 

The implementation of an automatic system for detecting awkward postures of a construction worker 

faces several technique challenges, i.e., to collect accurate motion data without interfering with ongoing 

works, covert the data to a computerized skeletal structure, and categorizing the structure according to the 

adopted observational method. Motion capture has been widely used in a variety of industries such as cinema, 

entertainment, and computer games Sharma et al. [18] reviewed several motion capture methodologies 

including marker-based motion capture (e.g., acoustical system, mechanical system, magnetic system, optical 

system) and marker-less motion capture such as video image recognition. Marker-based motion capture 

approaches usually cost more, require more setup, and also cause more interference to workers. Marker-less 

motion capture approaches on the other hand usually cost less, require less setup, and cause less interference 
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to workers. However, marker-less approach such as image recognition faces other challenges in a dynamic 

situation such as unpredicted human motions, only two-dimensional images available, changes of 

environment attributes (e.g., lighting), and blocking of camera’s view of target human body parts. Seo et. al. 

[20] tackled the problems of vision-based motion capture by using silhouette images that are insensitive to 

color, texture, and contrast changes to increase the accuracy of human skeletal analysis. 

Compared with an RGB image, a depth image contains data of the distance of pixels of three-dimensional 

objects surfaces from the camera. The tracking of human skeleton is one important feature provided by depth 

sensors. Microsoft’s Kinect [23b] was originally developed for Xbox 360 video game console and Windows 

PC to support natural user interface that allows users to communicate with the system or the game using 

gesture without wearing any attachment or holding any controller. This research used Kinect as the required 

depth sensor because it is a low-cost motion-capture solution that may produce a three-dimensional human 

skeletal image and structure information. It does not require any special equipment attached to the observed 

subject either. 

III. MODEL DESIGN 

This study develops an automated system for detecting and analyzing awkward postures of a construction 

worker that may lead to work related MSDs. This section describes the architecture and the process of the 

proposed system. The hardware of the system should be composed of one or multiple motion sensing 

cameras and a computer for analyzing motion data. This study used three Microsoft Kinect cameras and a 

Windows PC. Each Kinect contains an RGB camera capturing a color image, an infrared emitter and an IR 

depth sensor capturing a depth image, a 3-axis accelerometer determining the current orientation of the 

Kinect, and a multi-array microphone capturing sound [23b]. 

Figure 1 shows the architecture and process of the proposed system. The system takes the input of 

processed video image via Kinect and parameters set by the user through the user interface, identifies and 

calculates positions of target skeletal joints, categorizes postures and detects awkward ones, and then reports 

or alerts according to user specifications. The input video image processed by Kinect SDK provides 

three-dimensional coordinates of 20 human skeletal joints of the observed subject, including “hip center”, 

“spine”, “shoulder center”, “head”, “shoulder left”, “elbow left”, “wrist left”, “hand left”, “shoulder right”, “elbow 

right”, “wrist right”, “hand right”, “hip left”, “knee left”, “ankle left”, “foot left”, “hip right”, “knee right”, “ankle 

right”, and “foot right”.  

The bottom of Figure 1 shows the process of the system. For each video image frame, the system first 

identifies the skeletal joints of interest and calculates their coordinate relationships such as connected joints 

and their corresponding angles for later OWAS evaluation. The next step is to categorize the postures of back, 

arm, and leg according to the classifications of OWAS, and detect the awkward postures that require alerts 

and remedy actions as suggested by OWAS. The results will then be reported visually on the computer 

screen or stored in the database. 

Figure 1 

Architecture and Process of the System 
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The user interface includes several modules, including settings, posture analysis control, visualization 

control, camera control, and recording control. The setting module allows the user to specify the carried load 

of target subject and sampling frequency. The maximum carried load of the target subject needs to be 

specified manually by the user to avoid attachment of force sensor to the target subject. The sampling 

frequency determines the rate with which the system will capture from the original video images sent from 

Kinect when the posture analysis starts. For example, Kinect may offer 30 frames of video images per second 

but the user may only like to report one time of awkward posture if the target subject possesses an awkward 

posture continuously for that entire second. Figure 2 shows a captured screen of the prototype system.  

The posture analysis model basically controls the execution of the posture analysis and saving of the 

execution data. The visualization control module determines how the computer screen presents the execution 

data, including the sampling rate of presented data from the captured image frames, the threshold for 

awkward postures to be alerted, and the unit of time period for presenting alerted postures statistically. For 

example, one may show the frequency of alerted awkward postures for every minute. The camera control 

module allows the user to select one from the installed Kinect cameras and adjust its angle. The recording 

control module determines what data will be saved when the posture analysis module saves data after an 

execution completes. 

Figure 2 Interface of Prototype System 
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The prototype system was developed using Microsoft Visual Studio 2010 in C# language, and Kinect for 

Windows SDK [23a]. The system also uses SQLite Database, a popular public-domain database engine for 

local data storage, and EmguCV [22], a cross platform that allows Intel’s OpenCV’s image processing 

functions to be called from .NET compatible languages such as C# and Visual Basic. 

The Kinect cameras can provide the position information about twenty joints of a human skeleton (e.g., 

head, hand right, wrist right, elbow left, hip center, knee left, ankle left, and foot right) in a three-dimension 

coordinate system. With this information, the relative distances, angles of the associated limbs or other body 

parts, and thus individual postures can be derived. The individual posture of back, arms, and legs need to be 

categorized first in order to determine the type of the entire body posture of each sampled video frame based 

on the OWAS. 

For example, the OWAS categorizes the back posture into four types, i.e., “straight”, “straight and bent”, 

“straight and twisted”, and “bent and twisted”. The back posture will be identified as “straight” if the smaller 

angle between the vector (Vector1) passing through the spine and the shoulder center and the other vector 

(Vector2) passing through left hip and right hip is greater than or equal to 75°. The back posture will be 

identified as “straight and bent” if the smaller angle between Vector1 passing through the spine and the 

shoulder center and Vector2 passing through left hip and right hip is smaller than 75°. The back posture will 

be identified as “straight and twisted” if the angle measured in the X-Z plane, between the vectors normal to 

Vector1 passing through left shoulder and right shoulder and Vector2 passing through left hip and right hip 

is smaller than 15°. The back posture will be identified as “bent and twisted” if both “straight and bent” and 

“straight and twisted” conditions are met. 

IV. EVALUATION 

Fifteen graduate students from Civil Engineering Department of National Chiao Tung University, 

Taiwan, volunteered to participate in the evaluation of the prototype of the proposed system. The objective of 

the evaluation was to determine the accuracy of assigning observed postures into correct action levels as 

suggested based on the OWAS matrix. Three Kinect cameras (i.e., from the face/back, the side horizontally, 

and the 45° top angles) were set up to record each participant performing four tasks, including lifting and 

moving a bucket of sand, picking up tiles and put them into a paper box, hammering nails, and tiling 

magnet-glued tiles on a wall surface-mounted with steel board. Each task required four repetitions. All the 

tasks were performed on the same position except for the first task, for which the participant needed to lift 

the bucket and move for about three steps. Each participant was asked to perform the tasks naturally without 

any special constraints on body rotation or movement of body parts even they might block camera views. 

The task was designed to include common risk factors to MSDs such as unnatural work posture, repetitive 
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work, and exerted force, but not actually result in MSDs to the participants. Three experts, including a 

rehabilitation medical physician, a professor in physiotherapy, and a professor in medical engineering, also 

participated in assessing the accuracy of the detection of the system. 

The evaluation resulted in 88.5%, 88.2%, 48.4%, and 85.4% accuracies of categorization of postures for the 

four tasks, respectively. Except for the third task, which was to hammer nails, the accuracies appeared to be 

satisfactory and thus demonstrated the feasibility and usefulness of the system in diagnosing awkward 

postures contributing to MSDs in a controlled environment.  

Revisiting the miscategorized data and analyzing the causes to the categorization errors found a primary 

flaw in the design of tool for the task of hammering nails. As shown in Figure 3, a wooden box was specially 

made to allow a participant to hold the column inside the box while hammering the prefixed nails on the top 

surface of the box to avoid the participant’s hand being injured by a hammer. The authors thought merely 

blocking of one hand should have only little effect on categorization accuracy because the OWAS matrix did 

not consider gesture of hands for the categorization analysis. However, it appeared that the box not only 

blocked each participant’s hand but also blocked almost entire lower half of body parts because of 

requirement of squatting position to accomplish the task. This dramatically reduced Kinect’s accuracy of 

identification of a skeletal joint structure where joints that were not blocked might be still identified but 

connected with wrongly associated joints. As a result, the accuracy of categorization of individual and body 

postures also dropped because the categorization highly depended upon an accurate skeletal joint structure . 

The authors believed the accuracy would increase fairly if the protection box was removed from or replaced 

with just a horizontal wooden board in the task just like in a regular working situation in the construction 

industry. 

Figure 3 Protection box (left photo) for the task of hammering nails (right photo) 

                

V. Conclusions and Future Work 

Daily work activities of construction workers often involve sudden, repeated, or over-exertion that result 

in cumulative stress contributing to MSDs. This study proposes a computer system that uses Microsoft 

Kinect cameras and SDK to identify human skeletal structure and analyze and categorize the associated 

postures according to OWAS’s assessment for postures of high risk to MSDs. A prototype system has been 

developed to evaluate the feasibility and usefulness of the system in assessing construction workers’ 

awkward postures contributing to MSDs. The evaluation consists of four types of typical construction 

activities, and the system produces a satisfactory performance in all tasks with higher than 85% accuracy 

except for hammering nails. The accuracy of identification of skeletal structure of Kinect was dramatically 

affected because the associated protection wooden box blocked camera’s view most of the time, and in turn 

affected the categorization accuracy of the proposed system. Due to this limitation, the system is not suitable 

to be directly used in general on a normal construction site to constantly monitor the postures of construction 

workers. The system is feasible and useful only in a situation where the body parts of a worker concerned by 

OWAS are not blocked most of the time.  
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Traditionally, a physical therapist evaluates a worker’s risk to MSDs by visually observing and assessing 

how they perform their daily tasks. However, the assessment can be inaccurate for several reasons some of 

which are the inherent imprecision of measurement and low sampling rate of observation of human visual 

behavioral assessment. Thus, using the proposed system may provide the therapist with more accurate 

measurement and frequency estimation of postures. Considering the aforementioned limitation of the 

applicability of the prototype system, the future direction of this research will aim to extend the system so 

that it can be used to facilitate a therapist to diagnose awkward postures contributing to MSDs for 

construction workers or self-diagnosis and self-correction in a pre-arranged clinic room or a simulated virtual 

reality environment. 

The other future direction for the proposed system is to extend its application to other industries where 

workers’ risk to MSDs is also of concerned. For example, MSDs are also one of major disease sources, along 

with others such as cardio-vascular disease and hand arm vibration syndrome, for causing seafarers to take 

longer breaks from sea life or even lead to disability. Thus, on a modern ship with gym facilities, it may be 

also feasible to equip such a system for self-diagnosis and improvement of postures.  
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